skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stehle, Yijing Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graphene oxide (GO) membranes, known for their high dielectric constant and low dielectric loss, have emerged as promising separators for advanced energy storage and transfer devices. While previous research has focused on the aqueous stability enhancement by high-valence metal cations, their effect on modifying the dielectric properties of GO membranes remains understudied. This study investigates the impact of transition metal cation modification on the aqueous stability and dielectric properties of graphene oxide (GO) membranes. Multivalent transition metal chlorides (FeCl3, FeCl2, CuCl2, and CuCl) were introduced during the self-assembly process to create modified GO membranes. The membranes were characterized using various techniques, including zeta potential measurements, contact angle measurements, FTIR spectroscopy, and XRD spectroscopy. The aqueous stability of the modified membranes was evaluated, and their dielectric performance was assessed using capacitance measurements across a frequency range of 0.1 Hz to 105 Hz. The results demonstrate that the choice of transition metal cation and its oxidation state significantly influence the morphology, aqueous stability, and dielectric properties of the GO membranes. Notably, Fe3+ and Cu2+ modifications enhanced aqueous stability, while Fe2+ and Cu+ modifications improved dielectric performance. This study provides insights into tailoring the properties of GO membranes for various applications, including energy storage and transfer devices. 
    more » « less
    Free, publicly-accessible full text available July 5, 2026